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THE PROBLEM OF A GROWING ICICLE* 

N.KB. ARUTYUNYAN, S.S. GRIGORYAN and V.E. NAUMOV 

One of the applications of the mechanics of growing viscoelastic bodies, 
associated with the determination of the stressed-deformed state and 
regularities in the shape formation of a growing or thawing icicle, is 
considered. 

The growth of icicles is an exceedingly complex physico-mechanical 
process, the detailed investigation of which runs into very considerable 
difficulties. A mechanical model of an icicle is proposed in this paper 
which enables one, in our opinion, to work out a technqiueforestimating 
its stressed-deformed state and to predict the time of its destruction, 
that is, its detachment. This model makes no pretence whatsoever to 
being complete and must be considered as a first approximation when 
solving this problem. It is quite possible that this problem will 
enable one to develop an approach to the solution of appropriate 
technological and glaciological problems. 

1. Formulation of the problem of the growth of an icicle. Basic relation- 
ships. Let us confine ourselves to the assumption that an icicle is a drawn out figure of 
rotation, the length of which is significantly greater thanthemaximum diameter of the cross- 
sectional area. Let us suppose that the icicle is fixed to a planar horizontal surface which 
is perpendicular to its longitudinal axis, and let us place the origin of the cylindrical 
coordinate system (r,(p,z) in the cross-section clamped to the surface with the z-axisdirected 
downwards along the axis of the icicle (Fiq.1). It is further assumed that the growth of the 

icicle starts off from a certain initial configuration which, 
in principle, may be taken as the shape of a frozen suspended 
drop. Let 1, and R,(z) be the length and radius of the trans- 
verse cross-section of the icicle at the initial instant of time 
t = 0; 1 (t) and fi (t, z) the overall length of the icicle and 
the current radius of its transverse cross-section, and R 0, 
1 (t)) s 0. 

Let us surface S,, of the initial icicle in the coordinate 
system (r,z) = x be specified in a parametric or doordinate form 

Fig.1 

S, = {x: x = xg (z), 7 E [To, r,l) 

S, = {x: F, (r, z) E r - R, (z) = 0, z E [O, &I} 
(1.1) 

where Tot ‘cl are the value of a certain parameter z (which 
may, for example, be the length of an arc) which correspond to 
points on the contour of the axial cross-section of the icicle 
when z = 0 and z = 1,. 

The boundary of the ice S* = S* (t), which is changing as 
the icicle grows, is similarly specified using one of the follow- 
ing methods: 

Sf (t) = {x: x = x+ (t, T), z E IT,, z1 (t)l, t 2 0) 
S* (t) = {x: F (t, r, z) = r- R (t, Z) = 0, ~~10, 2 (t)l, t 20) 

(1.2) 

Let us assume that the surface s*(t) remains quite 
tapered during any stage in the growth of the icicle, that is, 

I aFlaz I -=g I aF/ar I, F = 0, t > 0 11.3) 

This means that Ib’RfaZ I< 1, that is, the angle between the tangent to the contour of 
the axial cross-section of the icicle and the z-axis is extremely small. The tapering con- 
dition (1.3) enables us to assume that the stressed state of the elongated body under 
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consideration is close to uniaxial and all the components of the stress are negligibly small 
compared with the normal axial stress tT,= 0. 

The quasistatic equilibrium of the icicle is ensured by the balance of the normal stresses 
which are distributed in an arbitrary transverse cross-section and the weight of that part of 
the icicle located below this cross-section. The equilibrium equation has the form 

R&z) U1 
2s f a(t,z, r)rdr=ngp, 1 Re(t,Qdc 

0 E 
0.4) 

where ps is a constant (the density of ice). In this equation no account is taken of the 
thin layer of water which flows over the surface of the icicle. We shall neglect the effect 
of the weight of the aqueous film which is flowing off and of other hydromechanical effects 
on the stressed state of the icicle. 

Let us introuduce the function e,(t,Z) into the treatment. This function is equal to 
the axial deformation of the material at points on the s-axis. We shall denote the axial 
deformation at an arbitrary point bulk by e(t,s, r). In accordance with the general formulation 
of an initial-boundary value problem for a growing body /l/, the compatibility conditions are, 
in general, not satisfied but the rates of the deformations do satisfy the compatibility con- 
dition (a time derivative is denoted by a dot): 

s' (t, 2, P) = Ed (t, 2) U.8 

We shall assume that an arbitrary infinitely small volume of the icicle, located in the 
neighbourhood of a point with coordinates (r,z) begins its existence from the moment of its 
genesis z+ (r,z) (the moment when the water freezes at this point). In the case of points 
within the initial icicle, this moment of formation is assumed to be equal to zero whereas, 
in the case of points lying in a domain where there is growth, it is obvious that T*(~,z)> 0. 

By integrating Eq.(l.S) with respect to time from the moment of the addition of a volume 
element z* (r,z) up to a certa&n current value of t, we shall have 

E (t, 2, r) - E* (r, 2) = eo (t, 2) - e, (P (r, z), 2) 0.6) 

where e* (r, z) is the initial axial deformation which arises at the moment of the addition of 
the element to the icicle and is associated, for example, with the "volume defect" of the 
water on freezing. Relationship (1.6) reflects the fact that the elementswhichhave solidified 
are in a deformed state, which is incompatible with the state of the main body. Apart from 
depending on the initial deformation a*, thestresses in these solidified elements will only 
be dependent on the growth of the axial deformation of the icicle after the moment of attach- 
ment. The axial deformation on the end of the icicle is obviously equal to zero: 

so (t, l (Q) = 0 (1.7) 
In order to describe the mechanical behaviour of theice under uniaxial tension we shall 

make use of the characteristic relationship in the non-linear theory of creep 

de 
~=~~+Ko”; E=const, K>O, n>i (1.8) 

where E istheinstantaneous modulus of elasticity and R and n axe constants which characterize 
the creep of the ice. 

We shall subsequently analyse two limiting cases when the first or second term on the 
right-hand side of Eq.cl.8) is the predominant term. 

2. Rapid growth of an icicle. Let us assume that the growth of the icicle is quite 
rapid so that the effects due to the creep of the ice do not have time to manifest themselves 
in any noticeable way. In this case the defining Eq.Cl.6) takes the form of Hooke's law 

a = alE (2.1) 
Taking into account relationships (1.6) and (2.11, we shall rewrite the equation for the 

equilibrium of the icicle (1.4) in the form 

R ($2) 

+R’(t,Z)Q(t,Z)- \ e,(+(r,z),z)rdr=== 
Q(Z) 

(2.2) 

Let us change the variable of integration 7* (r, a) = e in the second term of the left- 
had side of (2.21, allowing for the fact that the z-coordinate is fixed, and differentiate 
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both sides of inequality (2.2) with respect to t 

I(!> 
-+(t,Z)E,'(&Z)=~ \ ~(~,~)~(~,~)~~- (2.3) 

s* (R (t, z)) R(t, z)R’(t, z) 

The instant of time r1* (z) at which the overall length of the icicle is equal to z is 
associated with the function r*(r,z) introduced earlier by the relationship r,*(z) = a* (O,.r). 
It is easy to see that the functions l(t) and x1* (2) are mutually inverse: 

%I* fl (t)) E t, 1 (zr* (2)) = z (2.4) 

Let us divide both sides of Eq.(2.3) by ‘/,R2(t,z), integrate the resulting equation from 
the instant of formation of the cross-section z = const up to a certain current instant in 
time and change the order of integration with respectto c and z. Finally, we shall have 

The quantity e'.(z) = e,,(rr* (z),z) in the resulting expression is equal to the deformation 
of the axis of the icicle at a point z = con& at the instant of the formation of the 
corresponding cross-section. It is obvious that the magnitude of a" (2) may be put equal 
to zero in the case of the region of growth r > 1, (seeEq.(f.7)) taking relationships (2.4) 
into account) while, in the case of the domain 0 Qz< &, it is found from the equilibrium 
equation at the instant of the start of growth 

and is completely determined by the configuration of the initial icicle. 
Hence, expression (2.5) provides a solution to the problem of the formation of the 

stressed-deformed state of an elastic axially symmetric icicle. The functions R 0, z) and 

1 0) which define the law governing the formation of the shape of the icicle have been 
assumed to be specified up to now. They will be defined below in Sect.5. The function 

a* (z) in (2.51 which determines the initial deformation of the solidifying film of liquid 
is also assumed to be specified. It may be put equal to zero in a number of cases. 

3. The slow growth of an icicle. Let us now consider another limiting case when 
the growth of the icicle is so slow that the rate of change of the stresses can be neglected. 
In this case the decisive equation has the form of Glen's law. 

e' = Kd’ (3.1) 
where K and n are constants which characterize the creep of theice over a specified range of 
changes in the temperatureandother parameters of the surrounding medium. The inverse of this 
equation has the form 

o = (g-la')lJ" (3.2) 
Carrying out the transformations of the equilibrium Eq.ll.4) for the given case,weobtain 

R (:,t) s 
0 

(3.3) 

Here, it has been taken into account that the rate of axial deformation (and, consequently, 
also the values of the stresses) of the initial core of the icicle and of the elements of the 
growth zone in the transverse cross-section being considered are equal in accordance with 
relationship (1.5). By substituting expression (3.2) into (3.3), we shall have 

Expression (3.4) determines the behaviour of the growing icicle under conditions of non- 
linear creep which is described by the equation of state (3.1). At the same time, as in the 
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case of the rapid growth of the icicle, the function R&z) and l(t) are to be determined. 

4, Criteria for the breakdown of the icicle. One of the basic questions which 
arise in connection with the treatment of the problem of the growth of an icicle concerns the 
prediction of the moment when it will break and become detached under the action of its own 
weight. Let us first consider the case of an elastic icicle, the stressed-deformed state of 
which is determined by relationships (2.11, (2.5) and (2.6) S The criterion of maximum per- 
missible stresses f3, 4/ is conventionalLy employedasthe~onditionforthestrength and the 
brittle breakdown of ice in a state of elastic deformation. We shall denote the magnitude of 
the permissible stress during the elastic extension of an ice sample by cI*. The condition for 
the local brittle fracture of an icicle occupying a domain Q* at the instant of breakdown 
has the form 

a=+, xEQ* (4.1) 
Under the conditions of the problem being considered, it is also necessary to envisage 

thepossibilitythatthe icicle may break away from its support over a region of the area over 
which it is fixed to the undeformable surface of this support. The strength of the adhesive 
bond between the ice and a different kind of material, measured in stress units, is usually 
referred to as the freezing-together force and is substantially dependent on various parameters 
and, in particular, the physico-mechanical properties of the material supporting the icicle, 
the irregularities on the surface where the two materials freeze together, the temperature of 
the surrounding medium, etc. An analysis of the experimental values of the force of the 
freezing together of ice with certain widely used constructional materials (concrete or timber, 
for example) at an ambient temperature of 0 to -5°C leads to the conclusion that the force of 
freezing-together is, as a rule, somewhat less then the tensile strength of ice) at the same 
temperature and under strictly identical conditions) and that they have approximately the same 
values, apart from the scatter in the experimental data /3, 4/. 

Denoting the force of the freezing-together of the ice and the support surface by a**? 
the condition for local breakdown at points in the cross-section where the ice is fixed to 
the support may be written in the form 

a = o;r*, x fE so (4.2) 
where s" is the domain of the clamped cross-section (L = 0) at the instant of breakdown. If 
the axial stresses in the transverse cross-sectional area of the ice rod and the normal 
stresses over the area over which it is fixed to the support are uniformly distributed, con- 
dition (4.1) or (4.2) will serve as a criterion not only of local breakdown but also as the 
condition for the partial or complete detachment of the icicle. 

However, according to the accepted deformation model, the stresses in the case of a 
growing icicle are only, generally speaking, uniform within the limits of the initial trans- 
verse cross-sectional area of the icicle. On the whole, the distribution of the stresses in 
a cross-section of a growing icicle is non-uniform since the stresses in the growth zone are 
formed independently of the state of the main body of the icicle. Conditions (4.1) and (4.2) 
therefore cannot be used as criteria for the global breakdown or detachemnt of the icicle. 
Nevertheless, fracture of the initial cross-section results in the state of the icicle becoming 
dangerous from the point of view of its strength. 

Taking into account the fact that, in estimating the strength of an icicle, it is 
obviously advisable in certain cases to start off from the lower limiting value of the 
gravitational load, we shall assume that the attainment of the maximum permissible stress 
level denotes the fracture of the corresponding cross-section and the detachment of that part 
of the icicle which is located below this cross-section. Weshall denoteby b and t, the instants 
of time at which the limiting values of the stresses are attained in accordance with the 
equations 

maxxEQqa ftQs x) = %r ==&QO@ PO, xl = 01. (1.3) 

The icicle therefore becomes detached at the instant of time t* = min (tp, t& If the 
calculated values of to and ts,definedaccordingtocriteria (4.1) and (4.2) onthebasis of re- 
lationships (2.1), (2.5) and (2.61 arerelatedbytheinequality to<&% theiciclebecomescompletely 
detachedfromthesurfacetowhichitwas fixed; if tn<tc partialdetachmentoccurs at the fractured 
section. Asregardsthecaseofthepurely viscous stateofanicicle, which is defined by re- 

lationships (3.1) and (3.41, in view of the wide variety of strength and fracture criteria 
for materials undergoing creep, there are certain difficulties associated with the choice of 
an actual criterion which is applicable to the conditions of the problem under consideration. 
Obviously, the criterion of a limiting deformation rate (see /3/j: d$dt= c*, where c+ isthe 
critical deformation rate at which the sample fractures, is the simplest criterion for the 
fracture of ice which reflects the special features of its deformation under conditions of 
creep. Since, by virtue of (l.S), the rates ,of deformation of the core of the icicle and of 
the cross-section of elements which are added to it are equal, the criteria for local and 
global fracture are identical and are expressed by the equation e,'= c., where 8,' is the rate 
of deformation of the axis of the icicle. 



202 

5. The shaping oE a growing icicle. It has already been mentioned that the formulae 
obtained above, (2.5) and (3.4), are a solution of the problem on the build up of the stressed 
state of an icicle with the reservation that the mechanism of the change in its geometrical 
shape, which is determined by the conditions for heat and mass transfer with the surrounding 
medium, are known. The description of the heat and mass exchange between the body of the 
icicle and the water flowing off over it, as a result of the partial or complete freezing of 
which the icicle grows, is a separate and, most likely, a no less complex problem than the 
analysis of the stressed-deformed state of the icicle. One of the possible approaches to the 
solution of this problem is proposed below. 

5.1. The phase transition problem for a growing icicle. Strictly speaking, it is 
necessary to consider the overall mathematical formulation of the problem of a phase transition 
in order to analyse the motion of the interphase boundary as the water freezes during the 
growth of the icicle. A two-dimensional two-phase Stefan problem with a free boundary is one 
of the possible formulations. However, there are quite considerable difficulties in obtaining 
a solution of this problem in a clear form. We shall therefore simplify the formulation of 
the problem by confining ourselves to a treatment of the one-dimensional Stefan problem in a 
local coordinate system (v,s) when the "water-ice" phase transition front moves along the Y 
coordinate, which is measured off along the external normal to the surface of the initial 
icicle (by virtue of condition (1.31, the normal is, in fact, directed along a radius of the 
transverse cross-section). 

Taking into account the fact that, by virtue of condition (1.3) which has been adopted, 
the surface of the icicle is gently tapered, we shall confine ourselves to an analysis of the 
heat exchange between the ice and the water flowing off over it within the framework of the 
one-dimensional problem for a transverse cross-section of the icicle at an arbitrary fixed 
coordinate z. 

The heat-conduction equation for ice in the cross-section of an icicle has the form 

where T, is the temperature of the ice and ca is the thermal diffusivity of ice. Under the 
conditions of the problem being considered, the most intense heat exchange occurs in the 
comparativelythinlayerofthe ice which is adjacent to the moving boundary of separation of 
the phases. It can be shown that the first term on the right-hand side of Eq.tS.1) is 
decisive in the case of this layer. At the same time the front of the phase transition is by 
now considered to be planar. 

The heat-conduction equation for ice and the Stefan condition on the interphase boundary 
therefore have the form /S/ 

Here Tt is the temperature of the water, ic8 and kl are the thermal conductivities ofthesolid 
and liquid phases respectively, h is the latent heat of phase transition per unit mass and 
pt is the density of water. The points v = s-0 and v=E+O are limiting points on 
the boundary of separation of the phases as this boundary is approached from the side of the 
ice and the water. 

We shall assume that the temperature of the ice when v = - 00 (i.e. sufficiently far 
from the phase transition boundary) is constant and below the phase transition temperature. 
We shall also assume that the temperature of the water is constant and equal to the freezing 
point of water. Hence, in addition to relationships (5.2) and (5.3), we have the conditions 

TI z 0, Y) E(t); T, = T1 = 0, Y = E(t); T, = T,< (54) 
0, v=-ix 

Similarly, /5/, it may be shown that the temperature distribution in the iceandtheposition 
of the interphase boundary are determined by the formulae 

i5.5) 

The constant a is a solution of the following transcendental equation: 
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45.6) 

It is obvious that Bq.(5.6) always has a root a>o. 

5.2. Kinematics of the shaping of a growing icicle. The second expression in (5.5) 
determines the thickness of the layer of ice which is joined to the initial surface of the 
icicle, measured along the external normal to it. If the surface of the initial icicle is 
specified by relationships (l-l), the surface of the ice in the new position is defined by 
the equation 

x = xg + EVFJJVF, 1 (5.7) 

By virtue of the gentle tapering condition (1.3), the vector Eq.(5.7) can be reduced to 
the approximate scalar relationship 

R (t, 2) = II, (2) + 5 0) (5.8) 
where the function E(t) is defined by relationships (5.5) and (5.6). The resulting approxi- 
mate expression for the function R(t,Z) can be used directly to determine the stressed- 
deformed state of the icicle using formulae (2.5) of (3.4). We shall define the function Z(t) 
in these formulae, which is equal to, the length of the growing icicle, on the basis of the 
following relationships: 

The growth of 
then defined using 

the icicle in the transverse direction in the interval 1, < 2 < 1 (t) is 
the formula 

R (C 2) = E @) - 8 A* (z)) (5.10) 

where ‘Cl* (z) is the function specified by relationships (2.4). 

5.3. Analysis of the results. To be specific, let us assume that the surface of the 
initial icicle has the shape of a narrow cone 

T =iAz_CB, A>O, B>O, O<zz,<BtA~l, (5.11) 

where the coefficient A. is quite small. 
We shall confine ourselves to the treatment of an elastic icicle, the stressed-deformed 

state of which is defined by relationships (2.5) and (2.6). 
Let us put e* ~0 in these relationships. Calculations using formulae (2.51, (2.61, 

(5.51, (5.8)-(5.11) give the following results: 

e. 0, 2) = aS T/i/A + */a (to - z) B, 0 < z < 2, (5.12) 

e. (h 4 = aS Jfz/A - (z - 1,) B, I, < z < I (t) 

It can be seen from expressions (5.12) that the maximum value of the deformation of the 
ice is reached in the cross-section z =O, that is, on the surface where the ice is frozen 
to its support. At the same time, the deformation &,(t, 0) increases monotonically with time 
as the icicle grows. Let us assume that the condition for the strength of the icicle is 
satisfied at the instant when growth starts, t =o. Then, from relationships (2.1) and (4.21 
and the first expression of (S.lZ),we obtain the formula for the instant when the icicle will 
fracture 

fol A _+_qL)]” 
[ ( 4 

One important, but not completely obvious, fact should be emphasized: the stressed- 
deformed state of a growing elastic icicle is quite different from the state of the sameicicle 
with identical geometrical parameters but which has been deformed instantaneously or under 
such conditions when gravitational forces begin to act upon completion of the build up. 

Actually, we shall calculate the elastic axial deformation e,* (t, n*) of an icicle which 
has been instantaneously formed at an instant of time t for a certain fixed cross-section 
.?* = cimt < I,. When this is done, the radius of the transverse cross-section, in accordance 
with formula (5.81, is equal to R(t,d)=afi-t- A&-z) while the overall length of the icicle, 
according to relationships (5.9), is equal to Z(f)= Z,,+afi~~. We shall have a@* (t. II) - V,.P,& 
(S,.B)* where V,. = % S,. (2 - I*) is the volume of the ice included in the cone, lying below the 
cross-section I* and s** is the area of this cross-section. Hence, 

e,* (t, a’) = ‘/. t3 (1, + a firil.4 - ~9 
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By comparing the resulting value with the corresponding deformation of an icicle +,(t,z*) 
which has been deformed over a finite interval of time [0,r] in the gravitational force field 
(see the first expression of (5.12)), we shall write eJe,*= 3-22/(1 +u), where the quantity y= 
a JtiIA (la- z+)l determines the ratio of the thickness of the grown layer of ice to the radius 
of the initial transverse cross-section at a fixed S* at the instant of time t being Con- 
sidered. It is seen that lim,,, (eoieo*) = 3, that is, the deformation of a growing icicle, when 
the thickness of the layer of ice which has grown onto it is sufficiently large, is practically 
three times greater than the deformation of an icicle with the same dimensions which has been 
instantaneously formed. A similar comparison for the growth interval of the axis of the 
icicle I, < 9 B f (0, when the deformation e,(r,P) is determined by the second expression in 
(5.12), yields ~,/a,*= 3, that is, there is exactly a threefold excess of deformation at any 
stage of the growth. 

This difference intheelastic deformations of growing and "stationary" icicles is due to 
the fact that, in the case of a growing icicle, its elements perceive the gravitational force 
little by little as they are formed. In this casetheinternal elements of a cross-section 
turn out to be the most loaded and the longitudinal threads adjacent to the axis of the 
icicle are subjected to the greatest stretching deformations. The deformations are distributed 
normally over the cross-section of a stationary icicle since all of its elements are simul- 
taneously loaded. 

6. The thawing of an icicle. The shift in the thermal balance during the hours of 
daylight is responsible for the thawing of the ice and a reduction in the overall volume of an 
icicle. If the thawing out of the ice during the daylight hours is not very intensive, the 
icicle continues its existence for a further few days. During the morning hours when the air 
temperature is low it may grow, only to start thawing after the air has warmed up. 

We will now proceed to construct a mechanical model of a thawing icicle. In doing this, 
we shall make use of Glen's law (3.1) to describe the rheological behaviour during thawing. 
It is obvious that the formation of stresses and the rates of deformation in this case is, as 
before, determined by relationship (3.4). Unlike the case of a growing icicle, the functions 
R (t, Z) and 1 (t) in Eq.(3.4) will be monotonically decreasing functions of time when applied 
to the situation under consideration. 

6.1. The dynamics of the dripping down of the water film. The shaping of a thawing 
icicle is determined by the melting of the surface layer of ice in a heat exchange process 
with the thin layer (film) of water which is draining down along the external surface of the 
ice starting from the upper cross-section of the icicle where it is clamped. The amount of 
water which drains down the icicle is determined by the conditions under which the ice and 
snow in the feed reservoir are thawing. Let us settle on a certain initial configuration for 
the icicle and let the shape of the initial icicle at the initial instant of time t=O be 
described by relationships of the type (1.1). Thawing of the ice leads to a state of affairs 
where the solid surface of the icicle becomes the front of an "ice-water" phase transition 
which is displaced along the internal normal to the initial surface of the ice. As before, 
we shall denote the changing boundary of theice at the current instant of time by S*(t) (see 
(1.2)) and assume that conditions (1.3) are satisfied. 

Everywhere below we shall assume that the thickness of the water film h is significantly 
less than the characteristic cross-sectional dimensions of the icicle (the hydrodynamic 
problem of the flow round a solid of rotation subject to this condition may be considered as 
a planar problem). Moreoyer, we shall confine ourselves to the simplest model of draining 
off in which the effect of surface tension on the equilibrium liquid film is not taken into 
account. 

Within the framework of condition (1.3) the flow of the film along the surface S* may 
be analysed locally as a flow of a thin layer of a viscous incompressible liquid along an 
inclined plane. Let us introduce the coordinatesystem (<,q), the axis p of whichisdirected 
downwards along the surface of the icicle while the axis %J is directed along the external 
normal to it. By formulating the equation for the equilibrium of an infinitely thin layer of 
liquid under the action of tangential stresses and gravitational forces, as was done in /6/, 
we shall have 

-@JldQ = plg(q - h)cos 9 (6.1) 
where 0 is the angle of inclination of the tangent to the surface of the icicle from the 
vertical, zi is the velocity of the liquid in the direction of the axis C,P is the coef- 
ficient of dynamic viscosity. From (6.1) we find the expression for the flow rate 

u = (plg/l.r)cos 9 (hq - $/2) (6.2) 
Let us now write the condition for the conservation of the volume of the liquid during 

flow along an inclined plane while, for now, still not taking into account the motion of the 
boundary of separation of the phases (Fig.2). To higher-order small quantities, we obtain 

1' It+df=vII + (<U>h) I&y+d$ -(<U>h)lcdt -i- +%dt (6.3) 
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Here V is an elementary volume of the liquid included between the free surface of the 
flowing film and the inclined plane and also by a pair of infinitely closely arranged cross- 
sections c = Con& and 6 +dc = COnSt, <u> is the rate of flow averaged over the thickness 
of the layer. 

The increase in the volume of the water due to the partial thawing of the ice, that is, 
the displacement of the bearing surface through the material particles of the bulk of the 
solid phase, is taken into account by the relationship 

V It+& = v It + vdSdt (6.4) 

where v>O is the rate of displacement of the surface of the ice due to thawing directed 
along the normal to the surface of the icicle into the solid phase. 

Relationships (6.3) and (6.4) lead to the equation 

ah/C% + lY((U)It)ME = V (6.5) 

Using expression (6.2) to calculate the magnitude of (u>, taking account of the fact 
that cos8 zl by virtue of the smallness of the angle 8, and substituting the result into 
Eq.(6.5), we shall reduce it to the following form: 

ah/at + p/g~-'h*ahla6 = v (6.6) 
The rate of displacement of theice surface v must be determined 

from the additional relationships which describe the heat and mass 
exchange between the icicle and the aqueous film. 

6.2. Heat and mass transfer conditions as a film flows around 

\ 

a thawing icicle. 
Let us now return to the classical Stefan conditionontheboundary 

of an ice-water phase transition which, when applied to the case under 

9 consideration, has the form 

(6.7) 

<u> 

-1.1 We shall assume that the temperature of theiceis constant and 
Vdt equal to the melting point of ice T,=O and that the temperature of 

the water within the film is distributed over its thickness in accord- 

dh ante with the linear law 

T, = 0, q < 0; TI = T,qlh, b3.8) 
Fig.2 O<rlQh 

where T, is the temperature of the surrounding air (T, >O). These assumptions are quite well 
founded in the case of comparatively'massive icicles, if the layer of water draining off them 
is very thin. 

Using expressions (6.81, we shall write condition (6.7) in the form 

hp,v = k,T,lh (6.9) 
Since all the quantities appearing in this equation, apart from v and h, are assumed to 

be constant, it follows from it that, at the instant of time being considered, the rate of 
fusion of the ice is inversely proportional to the thickness of the water film which is 
draining off over the icicle. 

6.3. The basic equation of the dynamics of the draining of water over a thawing icicle 
and its solution. Eqs.(6.6) and (6.9) form a system of equations from which the law governing 
the motion of the external boundary of the ice 3' must be determined. By substituting (6.9) 
into (6.6) and introducing the dimensionless variables h* = hlld,, t* = t/t”, 6’ = 6/d,, where do and 
to are certain characteristic units of length and time, we obtain the basic equation for the 
flow of the water film (the asterisks on the dimensionless variables have been omitted): 

P,4t% 2k,T/ 
/,$+a&?+,, a=-_, b=- 

P Apldo' 
(6.10) 

It is natural to take the initial length of the icicle or its characteristic diameter as 
the scale d,. As to one may specify a quantity which either converts the n&ber a or the 

number b to unity. The solution oftheproblem of the thawing of the icicle will only be 

determined by the ratio of the dimensionless parameters a/b. When this ratio is changed from 
small to exceedingly large values, either thermal or hydrodynamic effects will predominate 
respectively. 

We note that Eq.(6.10) is obtained on the basis of relationships which describe the local 
flow of the film in the neighbourhood of an arbitrary point of the surface of the icicle. It 

can be shown that, on passing from the local coordinates (6.q) to the orthogonal curvilinear 
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coordinates (E,v). where 5 is the length of an arc measured along 
the distance along the orthogonal curve to the coordinate line e, 
within the framework of condition (1.3) for the gentle tapering of 

By introducing a new unknown function f =hs, let us rewrite 

8fl8t + afafii3~ = b 

the surface S' and v 
Eq.(6.10) retains its 
the surface 9. 
Eq.(6.10) in the form 

In order to solve this equation, we shall make use ofthemethod of characteristics. 
characteristic equations have the form 

dflds - b, dtlds = 1, dclds = af 

is 
form 

(6.11) 

The 

(6.12) 

Here, s is a coordinate measured along the characteristics. For now, we shall take initial 
conditions of the Cauchy type for the system of Eqs.(6.12) in the form of arbitrary functions 
of a characteristic coordinate z measured along the line of the initial conditions: 

f = fo (4, t = t, M, % = 50 (4 (6.13) 

From the first and last equations of (6.12), we get 

f (s, 2) = bs + fo ('t), f (s. t) = '/,ab@ + &o (r) -t- So (z) (6.14) 

The characteristics, corresponding to the solution (6.14) which has been obtained, have 
the form of branches of parabolas which are defined by the equations 

To be specific, let us specify the following initial conditions: 

fo (z) = 0, Ec f$ = Tb, fo (x1 = B -a% a > 0, B > 0 (66.15) 

In a physical sense, Cauchy-type initial conditions of this form constitute a boundary 
condition on the function f which is specified at the initial instant of time t = 0 on the 
surface of the initial icicle. 

Eliminating the variable '5 from Eqs.(6,14), we shall represent the solution of Eqs.(6.11) 
under the specified conditions (6.15) in the form 

f (t, 5) = bt + fi + a (aat - 1)-l (f, - V,ubta - a@) (6.16) 

Ascording to the resulting expression, the dimensionless thickness of the liquid layer 

h= v’f increases with time for all points of the surface of the icicle. In accordance with 
relationship (6.91, the rate of displacement of the phase boundary where thawing occurs through 
the mass points of the ice will then decrease montonically with time. We note that this con- 
clusion holds within the framework of the model adopted for the thawing of an icicle which 
is described by Eq.(6.11) foran initial condition of the form (6.15). Expression (6.161, 
when account is taken of the relation h = v'f in conjunction with relationships which are 
completely analogous to (5.7) and (5.81, can be directly employed to describe the shaping of 
a thawing icicle. 

As t-t 00, it follows from (6.16) that f-‘iabt, that is, the shaping of the icicle 
asymptotically evolves onto a regime of uniform melting over the whole of its surface with a 
rate of function v -f-“a which is independent of the longitudinal coordinate. This regime 
arises immediately if the initial thickness of the film, covering the icicle, is equal to zero. 
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